EXTENDING A NOVEL APPROACH FOR CLUSTERING TIME-SERIES

TREATING MULTIVARIATE TIME-SERIES AS POLYGONAL CURVES

Stefan Meintrup Alexander Munteanu **Dennis Rohde**

TU DORTMUND UNIVERSITY

OCTOBER 1, 2019

Fréchet distance is building block in many (machine learning) applications

- morphing
- protein structure alignment
- handwriting recognition
- clustering of time-series (weather, large physical experiments, stock...)? I™ compensate different sampling-rates and inhomogeneous lengths by only?
 - comparing the shape"
 - Driemel et al. (SODA 2015): Clustering time-series under the Fréchet distance (univariate)
 - ► (NeurIPS 2019) this work (multivariate)

sum- or average-based distance? Intractable for high dimensions distance? Intractable for high dimensions distance frate
(2007): Curve Matching, dime Warping distance: Fréchet distance a.k.a. dog-man distance"?
bottle-neck distance: Fréchet distance a.k.a. dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t)) ||₂

sum- or average-based distance? Intractable for high dimensions # (see frat? (2007): Curve Matching, ime Warping 2...)?
bottle-neck distance: Fréchet distance a.k.a. #dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t)) ||₂

sum- or average-based distance? Intractable for high dimensions # (see frat? (2007): Curve Matching, # ime Warping 2...)?
bottle-neck distance: Fréchet distance a.k.a. # dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t)) ||₂

HOW TO COMPARE POLYGONAL CURVES?

sum- or average-based distance? Intractable for high dimensions g (see frat? (2007): Curve Matching, Fime Warping 2..)?
bottle-neck distance: Fréchet distance a.k.a. dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t))||₂

HOW TO COMPARE POLYGONAL CURVES?

sum- or average-based distance? Intractable for high dimensions g (see frat? (2007): Curve Matching, Fime Warping 2..)?
bottle-neck distance: Fréchet distance a.k.a. dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t))||₂

HOW TO COMPARE POLYGONAL CURVES?

sum- or average-based distance? Intractable for high dimensions # (see frat a (2007): Curve Matching, ime Warping a.)?
bottle-neck distance: Fréchet distance a.k.a. #dog-man distance"?
d_F: (σ, τ) ↦ inf max || σ(t) - τ(h(t))||₂

sum- or average-based distance? Intractable for high dimensions distance? Intractable for high dimensions distance frate
(2007): Curve Matching, dime Warping a.)?
bottle-neck distance: Fréchet distance a.k.a. dog-man distance"?
d_F: (σ, τ) → inf max || σ(t) - τ(h(t))||₂

sum- or average-based distance? Intractable for high dimensions # (see frat a (2007): Curve Matching, Fime Warping a.)?
bottle-neck distance: Fréchet distance a.k.a. # dog-man distance"?
d_F: (σ, τ) → inf max || σ(t) - τ(h(t))||₂

COMPUTING THE FRÉCHET DISTANCE

- Alt-Godau Algorithm (1995: Computing the Fréchet distance between two Polygonal Curves)
 - Running-time $\mathcal{O}(d \cdot m^2 \log(m))$
- There is no algorithm with running-time? $\mathcal{O}(m^{2-\delta})$, for any $\delta > 0$, unless SETH' fails? (Bringmann 2014: Why walking the dog takes? time...)?

- n: [large) humber of curves to cluster?
- let high complexity, say $m \in \Omega(n)$
- high-dimensional, say $d \in \Omega(n)$
- \rightarrow Running-timesuper-cubicin n in the worst case?
 - ▶ But quadratic running-time is already considered intractable on Big Data?

Can we improve?

- n: [large) humber of curves to cluster?
- high complexity, say $m \in \Omega(n)$ i parallelization (CUDA)
- **high-dimensional**, say $d \in \Omega(n)$
- \rightarrow Running-timesuper-cubicin n in the worst case?
 - ▶ But quadratic unning-time is already considered intractable on Big Data?

Can we improve?

- n: [large) humber of curves to cluster?
- high complexity, say $m \in \Omega(n)$ i parallelization (CUDA)
- high-dimensional, say $d \in \Omega(n)$ is dimension reduction (quality guarantee)
- \rightarrow Running-timesuper-cubicin n in the worst case
 - ▶ But quadratic dunning-time is already considered intractable on Big Data?

Canweimprove?

- n: [large] humber of curves to cluster subsampling (quality guarantee)
- high complexity, say $m \in \Omega(n)$ i \cong parallelization (CUDA)
- high-dimensional, say $d \in \Omega(n)$ is dimension reduction (quality guarantee)
- \rightarrow Running-time super-cubic in η in the worst case η
 - ▶ But quadratic funning-time is already considered intractable on Big Data?

Can we improve?

IMPACT OF OUR MEASURES

