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Motivation 

Fréchet distance is building block in many (machine learning) applications 
morphing 
protein structure alignment 
handwriting recognition 
clustering of time-series (weather, large physical experiments, stock...) 
R compensate di˙erent sampling-rates and inhomogeneous lengths by only 

comparing the “shape” 
I Driemel et al. (SODA 2015): Clustering time-series under the Fréchet distance 
(univariate) 

I (NeurIPS 2019) this work (multivariate) 
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How to Compare Polygonal Curves? 

sum- or average-based distance? intractable for high dimensions � (see Efrat 
(2007): Curve Matching, Time Warping ...) 
bottle-neck distance: Fréchet distance a.k.a. “dog-man distance” 

dF : (σ, τ) 7→ inf max kσ(t) − τ (h(t))k2
h : [0,1]→[0,1] reparam. t∈[0,1] 
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Computing the Fréchet distance 

Alt-Godau Algorithm (1995: Computing the
Fréchet distance between two Polygonal
Curves) 
I Running-time O(d · m2 log(m)) 

There is no algorithm with running-time 
O(m2−δ), for any δ > 0, unless SETH’ fails 
(Bringmann 2014: Why walking the dog takes 
time...) 

3 5 



■ 

■ 

■ 

■ 

What Happens in the Big Data Regime? 

n: (large) number of curves to cluster 
high complexity, say m ∈ Ω(n) 
high-dimensional, say d ∈ Ω(n) 

→ Running-time super-cubic in n in the worst case 
I But quadratic running-time is already considered intractable on Big Data 

Can we improve? 
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What Happens in the Big Data Regime? 

n: (large) number of curves to cluster subsampling (quality guarantee) 
high complexity, say m ∈ Ω(n) Rparallelization (CUDA) 
high-dimensional, say d ∈ Ω(n) Rdimension reduction (quality guarantee) 

→ Running-time super-cubic in n in the worst case 
I But quadratic running-time is already considered intractable on Big Data 

Can we improve? 
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