

Data Science Center

SFB 876 Providing Information by Resource-Constrained Data Analysis

Variable Importance Measures for Functional Gradient Descent Boosting Algorithm

> Master Thesis at the University of Göttingen Zeyu Ding, Faculty of Statistics

Mathematical Statistics with Applications in Biometrics | 17.06.2021

Challenges in statistics as variables increase High-dimensional Data

Number of variables *p* is much higher than the number of samples *n*

Challenges in statistics as variables increase High-dimensional Data

Number of variables *p* is much higher than the number of samples *n*

Overly complex models

High performance, low interpretability

Challenges in statistics as variables increase High-dimensional Data

Number of variables *p* is much higher than the number of samples *n*

Overly complex models

High performance, low interpretability

Overfitting

Model performs well in the training phase and the prediction accuracy is however weak

Solutions to these problems Model Selection

AIC/BIC based model selection methods

Solutions to these problems Model Selection

AIC/BIC based model selection methods

Sparse Regression

Lasso and Ridge based regression methods

Solutions to these problems Model Selection

AIC/BIC based model selection methods

Sparse Regression

Lasso and Ridge based regression methods

Variable Importance Measures

 Usually used in ensemble algorithm, i.e., Random Forest, Gradient Boosting

dortmund

technische universität

Functional Gradient Descent Boosting Algorithm Statistical Boosting

Data Science Center

 Gradient boosting algorithm can be viewed as a statistical model of the generalized additive model class.

$\mathbf{f}(\mathbf{x}) = \beta_0 + \mathbf{f}_1(\mathbf{x}_1) + \mathbf{f}_2(\mathbf{x}_2) + \dots + \mathbf{f}_p(\mathbf{x}_p)$

technische universität

Functional Gradient Descent Boosting Algorithm Statistical Boosting

Data Science Center

 Gradient boosting algorithm can be viewed as a statistical model of the generalized additive model class.

Component-wise gradient boosting

 Only the best performed baselearner is chosen into the model in every iteration.

$$\mathbf{f}(\mathbf{x}) = \beta_0 + \mathbf{f}_1(\mathbf{x}_1) + \mathbf{f}_2(\mathbf{x}_2) + \dots + \mathbf{f}_p(\mathbf{x}_p)$$

.

Methodology

Functional Gradient Descent Boosting Algorithm Statistical Boosting

 Gradient boosting algorithm can be viewed as a statistical model of the generalized additive model class.

Component-wise gradient boosting

 Only the best performed baselearner is chosen into the model in every iteration.

Regressed iteratively

The model complexity is controlled by the number of iteration.

Data Science Center

SFB 876 Providing Information

by Resource-Constrained Data Analysis

Component-Wise Gradient Boosting Algorithm

1. Set the initial iteration m=0. Given the initialized value of $\hat{\it f}^{[0]}(\cdots)$, common choices are

$$\hat{f}^{[0]} \equiv \operatorname*{arg\,min}_{c} \frac{1}{n} \sum_{i=1}^{n} \rho(\mathbf{Y}_{i}, \mathbf{c})$$

or $\hat{\pmb{f}}^{[0]}\equiv 0$.

2. For m = 1 to m_{stop}

(a). Obtain the negative gradient vector at the previous iteration m-1

$$\boldsymbol{g}^{[m]} = \boldsymbol{g}_i^{[m]} = \left(\left[\frac{\partial \rho(\boldsymbol{y}_i, \boldsymbol{f}(\boldsymbol{x}_i))}{\partial \boldsymbol{f}(\boldsymbol{x}_i)} \right]_{\boldsymbol{f}(\boldsymbol{x}_i) = \boldsymbol{f}_{m-1}(\boldsymbol{x}_i)} \right)_{(i=1,\dots,n)}$$

(b). Fit the negative gradient vector $\mathbf{g}^{[m]}$ to the input variables \mathbf{x} by the base-learner procedure.

$$(\mathbf{x_1}, \mathbf{g}^{[m]}), (\mathbf{x_2}, \mathbf{g}^{[m]}), \dots, (\mathbf{x_p}, \mathbf{g}^{[m]}) \stackrel{\text{procedure}}{\longrightarrow} \hat{h}_i^m(x_i)_{i=1,\dots,p}$$

Component-Wise Gradient Boosting Algorithm

(c). Select the component j^* that best fits the negative gradient vector \mathbf{g}_m

$$j^* = \operatorname*{arg\,min}_{1 \le j \le p} \sum_{i=1}^n (g_i^{[m]} - \hat{h}_j^{[m]}(x_j))^2$$

(d). The model $\hat{f}^{[m]}(\cdot)$ is updated by

$$\hat{f}^{[m]}(\cdot) = \hat{f}^{[m-1]}(\cdot) + \theta \cdot \hat{h}^{[m]}_{j^*}(\mathbf{x}_{j^*})$$

where θ denotes a step length.

3. After m_{stop} iterations, the model is obtained by

$$\hat{f}(\cdot) = \hat{f}^{[m]}(\cdot)$$

Variable Selection Criterion Selection Frequency

Currently implemented in the algorithm

Variable Selection Criterion Empirical Risk Reduction

technische universität

The empirical risk reduction from each base learner in every iteration is calculated

Data Science Center

$$\mathsf{VI}_{\mathsf{risk}}^{[j]}(\hat{h}_j(\cdot)) = \sum_{m:j_m^*} (\rho(\mathbf{y}, \hat{f}^{[m]}) - \rho(\mathbf{y}, \hat{f}^{[m-1]}))$$

 l_2 -norm Contribution

The l₂-norm of every base-learner is used as a measure of the variable importance

$$\begin{split} \|\hat{h}_{j}(\cdot)\| &= \sqrt{\sum_{i=1}^{n} (\hat{h}_{j}^{[m_{stop}]}(\mathbf{x}_{ij}))^{2}} \\ V\!I_{norm}^{[j]}(\hat{h}_{j}(\cdot)) &= \frac{\|\hat{h}_{j}(\cdot)\|}{\sum_{j=1}^{p} \|\hat{h}_{j}(\cdot)\|} \end{split}$$

Simulation Data

Linear Model

 Simple Linear Model as base learners

Non-linear Model

B-spline as base learners

Sample size \boldsymbol{n}	number of iterations m_{stop}			
n = 50	$m_{stop} = 40$			
	$m_{stop} = m_{stop}^{[cvrisk]}$			
	$m_{stop} = 500$			
n = 200	$m_{stop} = 40$			
	$m_{stop} = m_{stop}^{[cvrisk]}$			
	$m_{stop} = 500$			
n = 1000	$m_{stop} = 40$			
	$m_{stop} = m_{stop}^{[cvrisk]}$			
	$m_{stop} = 500$			
n = 2000	$m_{stop} = 40$			
	$m_{stop} = m_{stop}^{[cvrisk]}$			
	$m_{stop} = 500$			

Table 3:	Sample	size n	and	number	of	iterations	m_{stop}
----------	--------	----------	-----	--------	----	------------	------------

Simulation Data

High-Dimensional Data

Table of Dimalation dough for mgn dimensional beenance						
Sample size \boldsymbol{n}	number of influential variables \boldsymbol{k}	number of non-influential variables \boldsymbol{j}	number of variables			
n = 50	k = 2	j = 100	p = 102			
n = 100	k = 3	j = 500	p = 503			
n = 500	k = 8	j = 1000	p = 1008			

 Table 5: Simulation design for high-dimensional scenario

Main Result

Linear Model

0.50

mstop(AIC) =127

— R

- 12

- x3

Main Result

High-dimensional Data

Figure 31: Number of false positive variables in high-dimensional scenario

Conclusion

Overfitting

The variable importance measures based on empirical risk reduction and norm contribution in the FGDB algorithm are stable in resisting overfitting problem.

Conclusion

Overfitting

The variable importance measures based on empirical risk reduction and norm contribution in the FGDB algorithm are stable in resisting overfitting problem.

High-Dimensional Data

In high-dimensional data scenario, VI risk and VI norm also have a good ability to distinguish and rank variables by their importance.

Conclusion

Overfitting

The variable importance measures based on empirical risk reduction and norm contribution in the FGDB algorithm are stable in resisting overfitting problem.

High-Dimensional Data

In high-dimensional data scenario, VI risk and VI norm also have a good ability to distinguish and rank variables by their importance.

Multicollinearity

They are also stable when existing multicollinear variables.

Outlook

More Complex Data

technische universität

In future research, more complex data scenarios need to be considered.

Data Science Center

More Real-World Applications

More real-world data needs to be validated, especially in the field of biometrics and bioinformatics when the dimensionality of the data is very high.

Outlook

More Complex Data

technische universität

In future research, more complex data scenarios need to be considered.

Data Science Center

More Real-World Applications

More real-world data needs to be validated, especially in the field of biometrics and bioinformatics when the dimensionality of the data is very high.

Thanks for your attention!

Reference

- Bühlmann, P., Gertheiss, J., Hieke, S., Kneib, T., Ma, S., Schumacher M., Ziegler, A. (2014). Discussion of the evolution of boosting algorithms and extending statistical boosting. Methods of information in medicine, 53(06), 436-445.
- Bühlmann, Peter, and Torsten Hothorn. Boosting algorithms: Regularization, prediction and model fitting Statistical science 22.4 (2007): 477-505.
- B. Hofner, L. Boccuto, and M. Goeker. Controlling false discoveries in high- dimensional situations: boosting with stability selection. BMC Bioinformatics, 144(16), 2015.
- Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, and Benjamin Hofner. mboost: Model-Based Boosting, 2020. R package version 2.9-2.
- Mayr, Andreas, et al. The evolution of boosting algorithms-from machine learning to statistical modelling. arXiv preprint arXiv:1403.1452 (2014).

Reference

- Mayr, A., Hofner, B., Schmid, M. (2012). The importance of knowing when to stop. Methods of Information in Medicine, 51(02), 178-186.
- Hofner, B., Hothorn, T., Kneib, T., Schmid, M. (2011). A framework for unbiased model selection based on boosting. Journal of Computational and Graphical Statistics, 20(4), 956-971.
- Bühlmann, P., Yu, B. (2003). Boosting with the l₂ loss: regression and classification. Journal of the American Statistical Association, 98(462), 324-339.

Appendix

Boston House Price Data

Variable abbreviation	Variable explanation
crim	per capita crime rate by town
zn	proportion of residential land zoned for lots over 25,000 sq.ft
indus	proportion of non-retail business acres per town
chas	Charles River dummy variable $(= 1 \text{ if tract bounds river; } 0 \text{ otherwise})$
nox	nitrogen oxides concentration (parts per 10 million)
rm	average number of rooms per dwelling
age	proportion of owner-occupied units built prior to 1940
dis	weighted mean of distances to five Boston employment centres
rad	index of accessibility to radial highways
tax	full-value property-tax rate per \$10,000
ptratio	pupil-teacher ratio by town
black	$1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town
lstat	lower status of the population (percent)
medv	median value of owner-occupied homes in \$1000s

Table 6: Boston Housing Dataset: variable explanation

Appendix

Boston House Price Data

Figure 36: Relative importance result of FGDB algorithm

Appendix

Boston House Price Data

Variable	t Mar	agging	randomForest		gbm	VI_{risk}	VI_{norm}	SeleFreq
	IncMSE	IncNodePurity	IncMSE	IncNodePurity				
crim	0.156	0.038	0.128	0.052	0.034	0.004	0.021	0.050
zn	0.038	0.001	0.031	0.005	0.000	0.000	0.003	0.010
indus	0.118	0.006	0.091	0.051	0.000	0.000	0.000	0.000
chas	0.002	0.001	0.020	0.003	0.008	0.012	0.048	0.090
nox	0.236	0.027	0.176	0.092	0.042	0.008	0.056	0.160
rm	0.641	0.443	0.320	0.282	0.389	0.323	0.261	0.130
age	0.175	0.012	0.094	0.022	0.002	0.000	0.000	0.000
dis	0.307	0.065	0.158	0.064	0.047	0.014	0.084	0.220
rad	0.501	0.003	0.046	0.006	0.003	0.000	0.000	0.000
tax	0.155	0.014	0.089	0.018	0.010	0.000	0.000	0.000
ptratio	0.187	0.015	0.133	0.033	0.028	0.099	0.152	0.140
black	0.100	0.011	0.047	0.013	0.004	0.017	0.054	0.08
lstat	0.374	0.364	0.320	0.358	0.433	0.522	0.321	0.12

Table 7: Boston Housing Dataset: Measures of Variable Importance