Time Series Analytics -Practice and Research

Department of Computer Science & Department of Statistics

Prof. Dr. Emmanuel Müller, Jan Aust and Nadine Ott

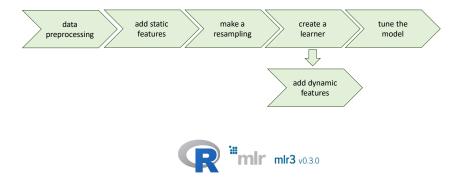
Business Case

Objective

- a retailer plans to restock its inventory every other week and only keep in stock the items that it has actually sold during that period
- create machine learning model to predict the demand
 - based on a six months training data
 - for every product
 - over a two-week period
- some products will be promoted for a limited period of time
- no response to price changes

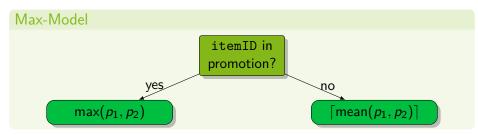
Special Challenges of the Task

- unusual \rightarrow promotion feature is missing for the training period
- orders not already aggregated and predict the next 14 days
- unbalanced evaluation metric:


$$dmcscore(y,p,w) = egin{cases} pw & ext{for } y \geq p \ (rac{8}{5}y - rac{3}{5}p)w & ext{sonst} \end{cases}$$

In this case y is the real value, p is the value of the prediction, w is the simulation price of the itemID

First Machine Learning Pipeline

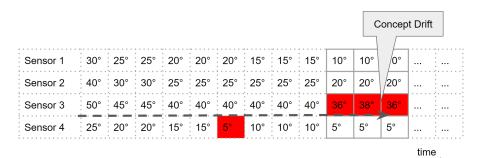


Second Machine Learning Pipeline

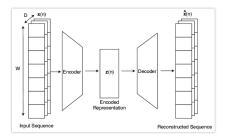
Final Model

We combined 2 XGBoost models because the single models tend to underestimate the demand

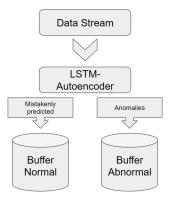
 p_1 is the prediction aggregated per biweek and p_2 is the prediction aggregated per day

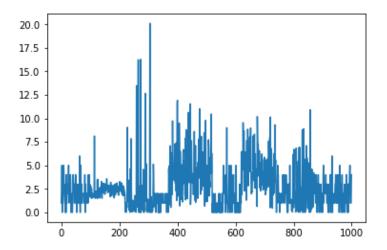

PhD-Student Bin Li - Department of Computer Science Chair IX

Sensor 1	30°	25°	25°	 	 	 	 	 	
Sensor 2	40°	30°	30°	 	 	 	 	 	
Sensor 3	50°	45°	45°	 	 	 	 	 	
Sensor 4	25°	20°	20°	 	 	 	 	 	


Sensor 1	30° 2	25° 25	° 20°	20°	20°		 	 	 	
Sensor 2	40° 3	30° 30	° 25°	25°	25°		 	 	 	
Sensor 3	50° 4	45° 45	° 40°	40°	40°		 	 	 	
Sensor 4	25° 2	20° 20	° 15°	15°	5°		 	 	 	

Sensor 1	30°	25°	25°	20°	20°	20°	15°	15°	15°	 	 	
Sensor 2	40°	30°	30°	25°	25°	25°	25°	25°	25°	 	 	
Sensor 3	50°	45°	45°	40°	40°	40°	40°	40°	40°	 	 	
Sensor 4	25°	20°	20°	15°	15°	5°	10°	10°	10°	 	 	


Sensor 1	30°	25°	25°	20°	20°	20°	15°	15°	15°	10°	10°	10°	
Sensor 2	40°	30°	30°	25°	25°	25°	25°	25°	25°	20°	20°	20°	
Sensor 3	50°	45°	45°	40°	40°	40°	40°	40°	40°	36°	38°	36°	
Sensor 4	25°	20°	20°	15°	15°	5°	10°	10°	10°	5°	5°	5°	


Bachelor thesis - Online anomaly detection - Solution

Trinh, Hoang Duy & Zeydan, Engin & Giupponi, L. & Dini, Paolo. (2019). Detecting Mobile Traffic Anomalies through Physical Control Channel Fingerprinting: a Deep Semi-supervised Approach. IEEE Access. PP. 1-1. 10.1103/ACCESS.2019.2947742.

Research project - Change point detection

Research project - Change point detection

- together with Erik Scharwächter (Department of Computer Science)
- evaluate existing algorithms for change point detection in consideration of the location of the change points
- H1: The relative position of the change points has an effect on the difficulty of the detection problem
- if we can reject H0, we may be able to better estimate in which scenarios which algorithm works well