

Auto-Scaling Graph Neural Networks

Matthias Fey

matthias.fey@tu-dortmund.de https://rusty1s.github.io

ny/rusty1s

Graph Neural Networks

Graph Neural Networks (GNNs) generalize Convolutional Neural Networks to arbitrary structured data by following a differentiable message passing scheme:

$$\mathbf{h}_v^{(\ell+1)} = f_\theta^{(\ell+1)} \left(\mathbf{h}_v^{(\ell)}, \left\{ \left\{ \mathbf{h}_w^{(\ell)} : w \in \mathcal{N}(v) \right\} \right\} \right)$$

where $\mathbf{h}_v^{(\ell)}$ denotes a feature vector for every node $v \in \mathcal{V}$.

Graph Neural Networks: Applications

Scalable Graph Neural Networks

Scalability techniques are indispensable for applying GNNs to large graphs

Mini-batch processed GNNs are subject to the neighbor explosion problem: exponentially increasing dependency of nodes over layers

Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges

Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

Node-wise Sampling

Samples a fixed amount of neighbors per node/layer

Subgraph-wise Sampling

Samples a subgraph to learn embeddings for all sampled nodes

Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges

Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

- Neighbor explosion still takes place in node-wise sampling for deeper GNNs
- Subgraph-wise sampling restricts learning to shallow subgraphs

Just by the act of sampling edges, a GNN will fail to learn about structural graph properties

No longer access to the full neighborhood information (reduced expressivity)

How can we learn structural graph properties while still being scalable? **

GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the missing out-of-mini-batch information for each layer

$$\begin{split} \mathbf{h}_{v}^{(\ell+1)} &= f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \Big\} \!\!\!\Big\} \bigg) \\ &= f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \cap \mathcal{B} \Big\} \!\!\!\Big\} \cup \Big\{ \!\!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \setminus \mathcal{B} \Big\} \!\!\!\!\Big\} \bigg) \\ &\approx f_{\theta}^{(\ell+1)} \bigg(\mathbf{h}_{v}^{(\ell)}, \Big\{ \!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \cap \mathcal{B} \Big\} \!\!\!\!\Big\} \cup \underbrace{\Big\{ \!\!\!\!\Big\{ \mathbf{h}_{w}^{(\ell)} : w \in \mathcal{N}(v) \setminus \mathcal{B} \Big\} \!\!\!\!\Big\} }_{\text{Historical Embeddings}} \end{split}$$

Historical embeddings represent node embeddings acquired in previous training iterations

GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the missing out-of-mini-batch information for each layer

- We pull the most recent histories from out-of-mini-batch nodes
- We push newly estimated embeddings of in-mini-batch nodes to histories

GNNAutoScale: Fast Historical Embeddings

Frequent data transfers to and from the GPU can cause major I/O bottlenecks 🚳

- We use non-blocking device transfers to counteract
 - 1. Asynchronously copy histories from out-of-mini-batch nodes to pinned memory
 - 2. Asynchronously transfer pinned memory buffers to GPU
 - 3. Synchronize individual CUDA stream before GPU access

GNNAutoScale

- provably maintains the properties and power of the original GNN
- is fast and memory-efficient despite making use of all available neighborhood information
- resembles full-batch performance
- auto-scales any GNN backbone model to large-scale graphs
- ✓ fully open-sourced at ♠/rusty1s/pyg_autoscale on top of PyTorch Geometric: ♠/pyg-team/pytorch_geometric

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)