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Graph Neural Networks

Graph Neural Networks (GNNs) generalize Convolutional Neural Networks to
arbitrary structured data by following a differentiable message passing scheme:
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where h'Y denotes a feature vector for every node v € V.
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Graph Neural Networks: Applications

from

(c) Reasoning in KGs

(d) Graph Matching (e) Scene Understanding  (f) Combinatorial Optimization



Scalable Graph Neural Networks

Scalability techniques are indispensable for applying GNNs to large graphs

Mini-batch processed GNNs are subject to the neighbor explosion problem:
exponentially increasing dependency of nodes over layers
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Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges
Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

Node-wise Sampling Subgraph-wise Sampling
Samples a fixed amount of Samples a subgraph to learn
neighbors per node/layer embeddings for all sampled nodes
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Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges
Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

e Neighbor explosion still takes place in node-wise sampling for deeper GNNs @
e Subgraph-wise sampling restricts learning to shallow subgraphs @

Just by the act of sampling edges,
a GNN will fail to learn about structural graph properties

No longer access to the full neighborhood information (reduced expressivity)

How can we learn structural graph

properties while still being scalable? @




GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer
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Historical Embeddings

Historical embeddings represent node embeddings
acquired in previous training iterations



GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer

e We pull the most recent histories from out-of-mini-batch nodes
e We push newly estimated embeddings of in-mini-batch nodes to histories
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GNNAutoScale: Fast Historical Embeddings

Frequent data transfers to and from the GPU can cause major I/O bottlenecks @

e We use non-blocking device transfers

to counteract & Main
. . H2D
1. Asynchronously copy histories Kernel
from out-of-mini-batch nodes D2H

to pinned memory

2. Asynchronously transfer pinned Worker
memory buffers to GPU H2D

Kernel

3. Synchronize individual CUDA stream D2H ,
b e f ore GP U adCcCcess Concurrent mini-batch execution

2x performance
improvement




GNNAutoScale

S

provably maintains the properties and power of the original GNN

S

Is fast and memory-efficient despite making use of all available
neighborhood information

S

resembles full-batch performance

S

auto-scales any GNN backbone model to large-scale graphs

A\

fully open-sourced at ()/rustyls/pyg_autoscale
on top of PyTorch Geometric: ()/pyg—-team/pytorch_geometric

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)
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