dortmund (%3 Stanford

university &&® University

Ve —
o\
-

Auto-Scaling Graph Neural Networks

Matthias Fey
matthias.fey@Ptu—-dortmund.de
https://rustyls.github.io
O /rustyls

Graph Neural Networks

Graph Neural Networks (GNNs) generalize Convolutional Neural Networks to
arbitrary structured data by following a differentiable message passing scheme:

h{"HY) = gt (hi@, fn):we N(v)}})

where h'Y denotes a feature vector for every node v € V.

Hidden Layer Hidden Layer
) @

Input Output

4) 4)
ReLLU ReLLU
> ‘ —) ‘ —> _ /> >
k) o o o o o o k)

Graph Neural Networks: Applications

from

(c) Reasoning in KGs

(d) Graph Matching (e) Scene Understanding (f) Combinatorial Optimization

Scalable Graph Neural Networks

Scalability techniques are indispensable for applying GNNs to large graphs

Mini-batch processed GNNs are subject to the neighbor explosion problem:
exponentially increasing dependency of nodes over layers

Mini-batch B C V (3) \
0
DROJORO

Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges
Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

Node-wise Sampling Subgraph-wise Sampling
Samples a fixed amount of Samples a subgraph to learn
neighbors per node/layer embeddings for all sampled nodes

() () 5

Mini-batch B C V DIV

Scalable Graph Neural Networks

The most common approaches for scaling GNNs work by sampling edges
Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang et al., 2019; Zeng et al. 2019;...

e Neighbor explosion still takes place in node-wise sampling for deeper GNNs @
e Subgraph-wise sampling restricts learning to shallow subgraphs @

Just by the act of sampling edges,
a GNN will fail to learn about structural graph properties

No longer access to the full neighborhood information (reduced expressivity)

How can we learn structural graph

properties while still being scalable? @

GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer

p(¢+1) — f(6+D) (hg), {{hg? ENNS N(v)}}>

(41 (h(@ {{h(@ w e N (v }} U {{hg) weN() \B}}>
<€+1><h€> {{h(@ we NG }}U{{Eg>;we/\/(v)\6}}>

N———
Historical Embeddings

Historical embeddings represent node embeddings
acquired in previous training iterations

GNNAutoScale: Historical Embeddings

We can utilize historical embeddings to approximate the
missing out-of-mini-batch information for each layer

e We pull the most recent histories from out-of-mini-batch nodes
e We push newly estimated embeddings of in-mini-batch nodes to histories

Mini-batch B @ : : =
® 1-hop neighborhood |J N (v)\ B (3) \‘\ | e local information &

veB

C

—B)

JoloN

Q M~ o \‘\

e trains over all data &

C

‘ H" e maintains properties E\(C«,’}Q
(1) \) J
P . 1 AA
(v) (v2) y e constant inference time &

GPU
3

GNNAutoScale: Fast Historical Embeddings

Frequent data transfers to and from the GPU can cause major I/O bottlenecks @

e We use non-blocking device transfers

to counteract & Main
. . H2D
1. Asynchronously copy histories Kernel
from out-of-mini-batch nodes D2H

to pinned memory

2. Asynchronously transfer pinned Worker
memory buffers to GPU H2D

Kernel

3. Synchronize individual CUDA stream D2H ,
b e f ore GP U adCcCcess Concurrent mini-batch execution

2x performance
improvement

GNNAutoScale

S

provably maintains the properties and power of the original GNN

S

Is fast and memory-efficient despite making use of all available
neighborhood information

S

resembles full-batch performance

S

auto-scales any GNN backbone model to large-scale graphs

A\

fully open-sourced at ()/rustyls/pyg_autoscale
on top of PyTorch Geometric: ()/pyg—-team/pytorch_geometric

Fey et al.: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

10

